Forum PARSEC
N'hésitez pas à vous inscrire afin de participer aux forums, c'est plus convivial et c'est évidemment gratuit.
Forum PARSEC

Philosophie, Astronomie, Rationalisme, Science, Esprit Critique
 
AccueilAccueil  CalendrierCalendrier  FAQFAQ  RechercherRechercher  S'enregistrerS'enregistrer  GroupesGroupes  Connexion  

Partagez | 
 

 Analyse de la preuve ontologique dite de Gödel

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
Pulstars
Univers
Univers


Masculin Nombre de messages : 2405
Age : 96
Loisirs : Sciences, épistémologie, esprit critique
Date d'inscription : 27/10/2004

MessageSujet: Analyse de la preuve ontologique dite de Gödel   Ven 13 Avr 2007 - 16:08


Analyse critique de la preuve ontologique dite de Gödel






Axiome 1. (Dichotomie) Une propriété est vraie si et seulement si sa négation est fausse.

L'axiome 1 est logiquement correct, principe du tiers-exclu, le vrai et le faux sont disjoints.




Axiome 2. (Fermeture) Une propriété est vraie si elle contient nécessairement une propriété vraie.

L'axiome 2 est logiquement correct. Une propriété contenant une propriété fausse est fausse.




Théorème 1. Une propriété vraie est logiquement consistante (c'est-à-dire qu'il est possible de trouver au moins un exemple)

Le théorème 1 est incomplet. Un exemple est possible seulement lorsqu'une propriété est observable et réfutable. Si une propriété ne peut pas être constatée factuellement, cette propriété est inconnaissable, aussi bien en physique qu'en mathématiques car la vérification peut être calculable et/ou prédictive par algèbre ou géométrie ou tout autre outil. Un exemple pris en compte sans moyen logique n'est pas un exemple ni un argument mais une fable.



Définition. Quelque chose est semblable à Dieu si et seulement si il contient toutes les propriétés vraies.

Le concept de Dieu impose une définition. Qu'est-ce que Dieu ? Si on suppose que la Bible est l'oeuvre de Dieu et que la Bible est la vérité absolue, cela n'excuse en aucune manière les innombrables contradictions rencontrées dans les textes bibliques. Si Dieu est absolument vrai, alors la Bible n'est pas de lui. Comment peut-on affirmer quels sont les attributs de Dieu alors qu''il est de nature métaphysique, c'est-à-dire inconnaissable, invérifiable et irréfutable ? Le problème de la définition de Dieu reste sans réponse. On ne sait pas si Dieu contient toutes les propriétés vraies, seul Dieu le sait... Dieu est éventuellement vrai au moins si Dieu existe. La définition est inévitablement fausse si Dieu n'existe pas et la définition est incertaine si Dieu existe. Par quels faits la définition est-elle posée, comment "sait-on" que Dieu contient toutes les propriétés vraies ? Peut-on le prouver, si oui comment ?



Axiome 3. Être semblable à Dieu est une propriété vraie.

L'axiome 3 est vrai seulement si la définition est vraie, mais la définition est incertaine.



Axiome 4. Être une propriété vraie est (logique, donc) nécessaire.

La négation de l'axiome 4 aurait posé un non-sens, donc c'est juste.



Définition. Une propriété P est l'essence de x si et seulement si x possède P et P est nécessairement minimale.

Exact.



Théorème 2. Si x est semblable à Dieu, alors être semblable à Dieu est l'essence de x.

Exact, puisque la définition précédente est exacte. Le théorème n'est vrai que dans un cadre non métaphysique, parce que s'il est vrai en étant appliqué à l'homme et aux choses, il devient faux lorsqu'il est appliqué à des choses transcendantes qui excluent le temps, i.e. la causalité, i.e. la relativité entre les choses. Dieu étant transcendant (un noumène) par nature, il ne peut être comparé causalement avec les choses de notre monde factuel (phénomènes).



Définition. NE(x) : x existe nécessairement s'il a une propriété essentielle.

Définition correcte. D'où l'aphorisme cartésien "Je pense donc je suis". J'ai une essence et je la constate, donc j'existe.



Axiome 5. Être NE est être semblable à Dieu.

Incorrect à cause du théorème 2.





Théorème 3. Il existe nécessairement x tel que x est semblable à Dieu.

Le théorème 3 est faux. On peut reformuler ainsi : l'existence de x est incertaine et indéfinie si x est semblable à Dieu. On peut redéfinir "preuve ontologique de Dieu" par "incertitude ontologique".




Conclusion : l'auteur de la preuve ontologique, supposé être Gödel, a fait preuve surtout de partialité et de foi plutôt que de logique rigoureuse.

_________________
http://www.sceptiques.qc.ca/  

« On ne sait que lorsqu'on sait peu, avec le savoir croît le doute. » (Goethe)
« La qualité d’une expérience se mesure au nombre de théories qu’elle fait tomber. »
« Oser savoir en utilisant sa raison critique c’est le fondement de notre modernité, cela reste la condition de son avenir.» (Emmanuel Kant)
« Seul a un caractère scientifique ce qui peut être réfuté. Ce qui n'est pas réfutable relève de la magie ou de la mystique. » (Karl Popper)
« Une théorie est scientifique si et seulement si elle susceptible d'être réfutée ; elle n'est pas vraie, mais tout au plus admise provisoirement. » (Karl Popper)
« Toute connaissance accessible doit être atteinte par des méthodes scientifiques ; et ce que la science ne peut pas découvrir, l'humanité ne peut pas le connaître. » (Bertrand Russell)
Revenir en haut Aller en bas
 
Analyse de la preuve ontologique dite de Gödel
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Preuve ontologique bilatérale
» Preuve ontologique, induction cartésienne & pré-supposés
» Dieu, le Chrétien, et l'épreuve
» Du méthane dans l'atmosphère marsienne. Preuve d'une vie biologique ?
» Horloge et son Horloger , la preuve mathématique de Dieu

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum PARSEC :: _Philosophie :: Épistémologie, philosophie des sciences-
Sauter vers: